Summer Math Circle Handouts
 June 16, 2019

2 Solutions to Divisibility Problems

2.1 Warm-up Problems

1. $1001=7 \cdot 11 \cdot 13$
2. The least common multiple of 6 and 8 is 24 , so the least number of packages of hot dogs Xanthia needs to buy is $24 / 6=4$.

2.2 Prime Factorization Review Exercises

1. The prime factorization of 48 is $2^{4} \cdot 3$. This means there are $5 \cdot 2=10$ factors of 48. To find the product of all of 48 's factors, we can pair them up into 5 groups that multiply to 48 : 1 and 48,2 and 24 , etc. Thus the product of the factors will be 48^{5}, so $n=5$. The sum of the factors will be $(1+2+4+8+16)(1+3)=124$. Thus $n+m=5+124=129$.

2.3 Modular Arithmetic Review Exercises

1. The LHS of $73+89 \equiv 3+9(\bmod 10)$ is equivalent to $3+9(\bmod 10)$ which is the same as the RHS, so this congruence is true.
2. We have the two congruences $a \equiv 7(\bmod 11)$ and $b \equiv 8(\bmod 11)$. Adding these two congruences together, we have $a+b \equiv 15 \equiv 4(\bmod 11)$.
3. $48^{48} \equiv(-1)^{48} \equiv 1(\bmod 7)$.

2.4 Sprint Exercises

1. To find the the least positive integer greater than 1 that leaves a remainder of 1 when divided by each of $2,3,4,5,6,7,8$ and 9 , we can find the least common multiple of $2,3,4,5,6,7,8$ and 9 and add 1 to it. We find the prime factorizations of each of the numbers: $2,3,2^{2}, 5,2 \cdot 3,6,2^{3}, 3^{2}$. The greatest power of 2 is 2^{3}, the greatest power of 3 is 3^{2}, and we also have a 5 and a 7 . Thus the least common multiple will be $2^{3} \cdot 3^{2} \cdot 5 \cdot 7=2520$. To get a remainder of 1 , we add one to get 2521.
2. $17 \equiv 3(\bmod 7)$ and $1234 \equiv 2(\bmod 7)$, so $17 n \equiv 1234(\bmod 7)$ is equivalent to $3 n \equiv 2(\bmod 7) .3 \cdot 3 \equiv 2(\bmod 7)$, so the smallest n will be 3 .
3. Because the numbers are easy to work with, you can just divide 123456 by 101 to get a remainder of 34 .
4. First we consider 3736. 3736 is divisible by 2 , and $3736 \equiv 1(\bmod 3)$. This means that $3736 \equiv 4(\bmod 6)$ (Since it's even, we must have $1+3=4)$. So $n \equiv-4$ $(\bmod 6) \Longrightarrow n=2$
5. For this problem it's easiest to make a table of all the values:

A	B	C	D	E	F	G	H	I	J	K	L	M
1	2	1	0	-1	-2	-1	0	1	2	1	0	-1
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
-2	-1	0	1	2	1	0	-1	-2	-1	0	1	2

Using the table, we get that "numeric" is equal to $-2+(-1)+(-1)+(-1)+2+$ $1+1=-1$.
6. We can split $1,234,567,890$ up into $12 \cdot 100^{4}+34 \cdot 100^{3}+56 \cdot 100^{2}+78 \cdot 100+90$. Since $100 \equiv 1(\bmod 99)$, this is equivalent to

$$
12 \cdot 1^{4}+34 \cdot 1^{3}+56 \cdot 1^{2}+78 \cdot 1+90 \equiv 270 \equiv-27 \equiv 72 \quad(\bmod 99)
$$

7. There are 21 terms in the sum (to verify this, add 4 to each term then divide by 5). Using the sum formula, the sum will be $(21)(1+101) / 2=21 \cdot 51.21 \equiv 6$ $(\bmod 15)$ and $51 \equiv 6(\bmod 15)$, so $21 \cdot 51 \equiv 6 \cdot 6 \equiv 6(\bmod 15) \Longrightarrow n=6$.
8. From the warm up exercise, we know 1001 is a multiple of 7 , so the smallest four-digit integer one less than a multiple of 7 will be 1000 .
9. $2004=2^{2} \cdot 3 \cdot 167$. We want to make x, y and z as small as possible, so one of them has to be 167. For the remaining two variables, we can do 12 and 1,2 and 6 , or 3 and 4.3 and 4 give the smallest sum, so the minimum possible value will be $3+4+167=174$.
10. There are 100 terms in the sum (add 1 to each term, then divide by 2). Using the sum formula, we have $100(1+199) / 2=100 \cdot 100$. Since $100 \equiv 2(\bmod 7)$, $100 \cdot 100 \equiv 2 \cdot 2 \equiv 4(\bmod 7)$.
11. $10 \equiv 1(\bmod 9)$, so taking the sum $\bmod 9$ is equivalent to adding up all the digits (why? We can write the numbers as $\left.1+(1 \cdot 10+2)+\left(1 \cdot 10^{2}+2 \cdot 10+3\right)+\cdots\right)$. There are $81 \mathrm{~s}, 72 \mathrm{~s}, 63 \mathrm{~s}, 54 \mathrm{~s}$, and so on. That means the sum is equivalent to $8+14+18+20+20+18+14+8 \equiv 2(-1+5+0+2) \equiv 12 \equiv 3(\bmod 9)$.
12. We can divide both sides by n ! to get $(n+1)+(n+2)(n+1)=440$. Factoring, we obtain $(n+1)(n+3)=440$. Since n is an integer, $(n+1)$ and $(n+3)$ must be factors of 440 . Note that 20 and 22 multiply to 440 , and are two apart like $(n+1)$ and $(n+3)$. Thus $n+1=20 \Longrightarrow n=19$.
13. If $x-3$ and $y+3$ are multiples of 7 , then $x-3 \equiv 0(\bmod 7) \Longrightarrow x \equiv 3(\bmod 7)$ and $y+3 \equiv 0(\bmod 7) \Longrightarrow y \equiv-3(\bmod 7)$. That means $x^{2}+x y+y^{2}+n \equiv$ $3^{2}+3(-3)+(-3)^{2}+n \equiv 9+n \equiv 0(\bmod 7)$. Thus the smallest n must be 5 .
14. For $\overline{24, z 38}$ to be divisible by 6 , it must be divisible by 2 and 3 . We know it's divisible by 2 because it is even. To check divisibility by 3 , we add up all the digits to get $2+4+z+3+8=17+z$. To make this sum a multiple of $3, z$ can be 1,4 , or 7 for a sum of $1+4+7=12$.
15. Since $5 \equiv 2(\bmod 3)$, we can rewrite $5^{n} \equiv n^{5}(\bmod 3)$ as $2^{n} \equiv n^{5}(\bmod 3)$. Now it's a matter of guess and check. $2^{1} \not \equiv 1^{5}(\bmod 3), 2^{2} \not \equiv 2^{5}(\bmod 3), 2^{3} \not \equiv 3^{5}$ $(\bmod 3), 2^{4} \equiv 4^{5}(\bmod 3)$, so the smallest n is 4 (feel free to verify all of the (in)congruences on your own).

2.5 Problems

1. The greatest integer will be 4312, and the least will be 1324, for a total of 5636 .
2. We can use the formula from the handout to compute p quickly:

$$
\sum_{i=1}^{\infty}\left\lfloor\frac{33}{3^{i}}\right\rfloor=\left\lfloor\frac{33}{3}\right\rfloor+\left\lfloor\frac{33}{9}\right\rfloor+\left\lfloor\frac{33}{27}\right\rfloor+\left\lfloor\frac{33}{81}\right\rfloor+\ldots
$$

This sums to $11+3+1=15$.
3. For a number to be divisible by 44 , it must be divisible by both 4 and 11 . Using the divisibility rule for 11 , we take the alternating sums of the digits of $\overline{5 m 5,62 n}$ to get $5+5+2=12$ and $m+6+n$. For the number to be divisible by 11 , $m+6+n$ can equal 12 or 23 . So $m+n=6$ or $m+n=17$. Since we want the greatest number possible, we can let $m=9$ and $n=8.28$ is divisible by 4 , so this works. Thus the answer is $m+n=17$.
4. We can write out the terms of the Fibonacci sequence $\bmod 4$, until the sequence starts to repeat. Let the terms in this new sequence be called $a_{n}=F_{n} \bmod 4$. Calculating the first few terms of a_{n}, we get $1,1,2,3,1,0,1,1,2,3,1,0 \ldots$, which contains two full cycles of the sequence $\bmod 4$ (we see that the sequence repeats after the first 6 terms). So our cycle is of length 6 , which means the value of a_{n} is equivalent to $a_{n} \bmod 6$. So a_{100} has the same value as a_{4}, because $100 \equiv 4 \bmod 6$. Referring to the first 6 terms of a_{n} we calculated above, $a_{4}=3$.
5. Proof. We can express every positive integer n with ones digit d_{0}, tens digit d_{1}, hundreds digit d_{2}, and so on as $d_{0}+d_{1} \cdot 10+d_{2} \cdot 10^{2}+\cdots$. Since $10 \equiv 1(\bmod 3)$ and $\bmod 9, n$ is equivalent to $d_{0}+d_{1}+d_{2}+\cdots$ in $\bmod 3$ and 9 . In other words, if the sum of the digits of n are divisible by 3 , then n is divisible by 3 (and the same for 9).
6. The prime factorization of 4000 is $2^{5} \cdot 5^{3}$. If n is positive, then the greatest possible power of 5 in the denominator of the fraction will be 3 . If n is negative, 2 will be in the denominator of the fraction. The greatest possible power of 2 is $5 . n$ can also be 0 , so this gives us a total of $3+5+1=9$ possible values of n.
7. We know that $n \equiv S(n) \bmod 9$ from our divisibility rule for 9 . So if $S(n)=1274$, then $n \equiv S(n) \equiv 5 \bmod 9$. So n has a remainder of 5 when divided by 9 , which means that $n+1 \equiv 6 \bmod 9$. Using our divisibility rule from above, we have $n+1 \equiv S(n+1) \equiv 6 \bmod 9$. So the answer must leave a remainder of 6 when divided by 9 . The only answer choice that satisfies this is (D)1239
8. It is easy to see that the smallest possible 4-digit integer with unique digits is 1234. Although 1234 and also 1235(the next smallest) is not divisible by its integers, 1236 is because it is divisible by 2 and 3 .
9. To find the remainder when divided by 45 , we can find the remainders when divided by 5 and 9 , which we know the divisibility rules for. $N \bmod 5$ is equivalent to the unit digit of N, which is just $4 . N \bmod 9$ is equivalent to the sum of the digits of N. However, instead of finding how many of each digit there is in N, we can simply calculate $1+2+\ldots+43+44$. This is because for each two-digit number, $x y \equiv x+y \bmod 9$ (where $x y$ represents the two-digit number $10 x+y$, not $x \cdot y$). And for single-digit numbers, $x \equiv x \bmod 9$ (where x represents a single digit). So $1+2+\ldots+43+44=\frac{44 \cdot 45}{2}=22 * 45 \equiv 0 \bmod 9$, since 45 is divisible by 9 . So we have that $N \equiv 4 \bmod 5$ and $N \equiv 0 \bmod 9$. So we must find a number between 0 and 44 that satisifes these properties. Testing multiples of 9 , we see that 9 satisfies both conditions, so our answer is 9 .
10. We see that since $Q R S$ is divisible by $5, S$ must equal either 0 or 5 , but it cannot equal 0 , so $S=5$. We notice that since $P Q R$ must be even, R must be either 2 or 4 . However, when $R=2$, we see that $T \equiv 2(\bmod 3)$, which cannot happen because 2 and 5 are already used up; so $R=4$. This gives $T \equiv 3(\bmod 4)$, meaning $T=3$. Now, we see that Q could be either 1 or 2 , but 14 is not divisible by 4 , but 24 is. This means that $R=4$ and $P=(\mathbf{A}) 1$. Credit: AoPS
11. We have $n=100 q+r$ by the definition of quotient and remainder. We must find values of n such that $q+r \equiv 0 \bmod 11$. We can add $99 q$ to both sides of the congruence, to get $100 q+r \equiv 99 q \bmod 11$. However, since 99 is divisible by 11 , $99 q \equiv 0 \bmod 11$. Also note that $n=100 q+r$. So substituting these values into the congruence $100 q+r \equiv 99 q \bmod 11$, we get $n \cong 0 \bmod 11$. So the problem is reduced to finding the number of 5 -digit numbers that are divisible by 11 (it was given that n is a 5 -digit number). The smallest 5 -digit number divisible by 11 is $10010=910 \cdot 11$, and the largest is $99990=9090 * 11$ (this is easy to see from the fact that $9999=909 * 11$ is divisible by 11). Hence, the number of 5 -digit numbers that are divisible by 11 is $9090-910+1=8181$.
12. Note that $a b c+a b+a=a(b c+b+1)$. Also note that there is an equal number of numbers in the set that are 0,1 , and $2 \bmod 3$ (so there is a $\frac{1}{3}$ that a variable is a certain number $\bmod 3$). This is because 2010 is divisible by 3 . If $a \equiv 0 \bmod 3$, then the expression will be divisible by 3 (since $3 k$ is divisible by 3 for any integer $k)$. The chance that a is $0 \bmod 3$ is $\frac{1}{3}$.

We must now consider the case that a is not divisible by 3 , or $a \equiv 1$ or $2 \bmod 3$, which has a $\frac{2}{3}$ chance of happening. But now we must consider the value of b $\bmod 3$. If $b \equiv 0 \bmod 3$, then $0 \cdot c+0+1 \equiv 1 \bmod 3$, but this cannot happen as $b c+b+1$ must be divisible by $3($ or $0 \bmod 3)$. Our next case is if $b \equiv 1 \bmod 3$ (probability $\frac{1}{3}$), so $1 \cdot c+1+1 \equiv c+2 \equiv 0 \bmod 3$, which means that $c \equiv 1$ $\bmod 3\left(\right.$ probability $\left.\frac{1}{3}\right)$. So the chance of this case happening is $\left(\frac{1}{3}\right)^{2}$.
Our next (and last) case is when $b \equiv 2 \bmod 3\left(\right.$ probability $\left.\frac{1}{3}\right) \cdot 2 \cdot c+2+1 \equiv 2 c \equiv 0$ $\bmod 3$, so $c \equiv 0 \bmod 3\left(\right.$ probability $\left.\frac{1}{3}\right)$. The chance of this case happening is $\left(\frac{1}{3}\right)^{2}$. Combining all of our probabilities from all our cases, we get $\frac{1}{3}+\frac{2}{3}\left(\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}\right)=$ $\frac{13}{27}$.
13. Prime factorizing 323 gives you $17 \cdot 19$. The desired answer needs to be a multiple of 17 or 19 , because if it is not a multiple of 17 or 19 , the LCM, or the least possible value for n, will not be more than 4 digits. Looking at the answer choices, (C) 340 is the smallest number divisible by 17 or 19. Checking, we can see that n would be 6460 .
14. As 71 is prime, c, d, and e must be 1,1 , and 71 (up to ordering). However, since c and e are divisors of 70 and 72 respectively, the only possibility is $(c, d, e)=$ $(1,71,1)$. Now we are left with finding the number of solutions (a, b, f, g) satisfying $a b=70$ and $f g=72$, which separates easily into two subproblems. The number of positive integer solutions to $a b=70$ simply equals the number of divisors of 70 (as we can choose a divisor for a, which uniquely determines b). As $70=2^{1} \cdot 5^{1} \cdot 7^{1}$, we have $d(70)=(1+1)(1+1)(1+1)=8$ solutions. Similarly, $72=2^{3} \cdot 3^{2}$, so $d(72)=4 \times 3=12$.
Then the answer is simply $8 \times 12=096$. Credit: scrabbler94 (AoPS)
15. Let's assume that one of the children is 5 years old. Then 5 must divide the 4-digit license plate number, implying that the last digit of the 4-digit number must either be a 0 or a 5 . Since the ages of the 8 children are 8 distinct integers from the set $\{1,2, \ldots, 9\}$, we know that at least one child's age is even. Therefore, since the 4 -digit number must be divisible by 2 , its last digit cannot be 5 (the last digit must be even). Hence, the last digit must be 0 .
Since there are only 2 distinct letters in the 4 digit number and each digit is repeated twice, we know that the number must be of the form $d d 00$ or $d 0 d 0$, where d is an arbitrary digit. Additionally, we know that the last 2 digits of the number form Mr. Jones' age, so we can rule out the first case; thus, the number must be of the form $d 0 d 0$.

Now, we can write the numeral $d 0 d 0$ as $d \cdot 1010=d \cdot 101 \cdot 10$. We know that the number must be divisible by 3 since 3,6 , and 9 are divisible by 3 and it also must be divisible by 4 since 4 and 8 are divisible by 4 . Using the divisibility rule of 4 , we must have the numeral $a 0$ is divisible by 4 which means a is even. By the
divisibility rule for $3, a+a+0+0$ should be divisible by 3 which means a is divisible by 3 . Hence, we have that $a=6$. However, using the divisibility rules for 7 and 9,6060 is not divisible by 7 or 9 . This is a contradiction, so 5 cannot be the age of one of Mr. Jones' children.
16. So we must find the values of n such that $3^{n-1}+5^{n-1} \mid 3^{n}+5^{n}$. We know that

$$
3^{n-1}+5^{n-1} \mid\left(3^{n-1}+5^{n-1}\right) \cdot(3+5)=3^{n}+5^{n}+5 \cdot 3^{n-1}+3 \cdot 5^{n-1}
$$

Now we will use the property that if $k \mid a$ and $k \mid a+b$, then $k \mid b$. So we can subtract $3^{n}+5^{n}$ from the right side of the above statement (using the very first statement, $\left.3^{n-1}+5^{n-1} \mid 3^{n}+5^{n}\right)$, to get

$$
3^{n-1}+5^{n-1} \mid 5 \cdot 3^{n-1}+3 \cdot 5^{n-1}=15\left(3^{n-2}+5^{n-2}\right)
$$

so

$$
3^{n-1}+5^{n-1} \mid 15\left(3^{n-2}+5^{n-2}\right)
$$

We will now take care of the case where $n=1$. When $n=1,3^{n-1}+5^{n-1}=2$, and $3^{n}+5^{n}=8$, and $2 \mid 8$. Hence, $n=1$ satisfies the constraints. Now, for $n>1$, we see that $\operatorname{gcd}\left(3^{n-1}+5^{n-1}, 15\right)=1$. This is because $3^{n-1}+5^{n-1}$ is not divisible by 3 or 5 , because $\operatorname{gcd}(3,5)=1$. Hence, for the above statement to be true, we must have

$$
3^{n-1}+5^{n-1} \mid 3^{n-2}+5^{n-2}
$$

However, if $a \mid b$ for positive a and b, then $a \leq b$. So we must have $3^{n-1}+5^{n-1}<$ $3^{n-2}+5^{n-2}$, which is not true for $n>1$ because we have $3^{n-1}>3^{n-2}$ and $5^{n-1}>5^{n-2}$. Hence, there are not solutions for $n>1$ and hence, the only solution is when $n=1$.

